Jump to content

Schiff base

From Wikipedia, the free encyclopedia
General structure of an imine. Schiff bases are imines in which R3 is an alkyl or aryl group (not a hydrogen). R1 and R2 may be hydrogens
General structure of an azomethine compound

In organic chemistry, a Schiff base (named after Hugo Schiff) is a compound with the general structure R1R2C=NR3 (R3 = alkyl or aryl, but not hydrogen).[1][2] They can be considered a sub-class of imines, being either secondary ketimines or secondary aldimines depending on their structure. Anil refers to a common subset of Schiff bases: imines derived from anilines.[3] The term can be synonymous with azomethine which refers specifically to secondary aldimines (i.e. R−CH=NR' where R' ≠ H).[4]

Synthesis

[edit]

Schiff bases can be synthesized from an aliphatic or aromatic amine and a carbonyl compound by nucleophilic addition forming a hemiaminal, followed by a dehydration to generate an imine. In a typical reaction, 4,4'-oxydianiline reacts with o-vanillin:[5]

A mixture of 4,4'-oxydianiline 1 (1.00 g, 5.00 mmol) and o-vanillin 2 (1.52 g, 10.0 mmol) in methanol (40.0 ml) is stirred at room temperature for one hour to give an orange precipitate and after filtration and washing with methanol to give the pure Schiff base 3 (2.27 g, 97%)

Schiff bases can also be synthesized via the Aza-Wittig reaction.

Biochemistry

[edit]

Schiff bases have been investigated in relation to a wide range of contexts, including antimicrobial, antiviral and anticancer activity. They have also been considered for the inhibition of amyloid-β aggregation.[6]

Schiff bases are common enzymatic intermediates where an amine, such as the terminal group of a lysine residue, reversibly reacts with an aldehyde or ketone of a cofactor or substrate. The common enzyme cofactor pyridoxal phosphate (PLP) forms a Schiff base with a lysine residue and is transaldiminated to the substrate(s).[7] Similarly, the cofactor retinal forms a Schiff base in rhodopsins, including human rhodopsin (via Lysine 296), which is key in the photoreception mechanism.

Coordination chemistry

[edit]

The term Schiff base is normally applied to these compounds when they are being used as ligands to form coordination complexes with metal ions[8]. One example is Jacobsen's catalyst. The imine nitrogen is basic and exhibits pi-acceptor properties. Several, especially the diiminopyridines are noninnocent ligands. Many Schiff base ligands are derived from alkyl diamines and aromatic aldehydes.[9]

Chiral Schiff bases were one of the first ligands used for asymmetric catalysis. In 1968 Ryōji Noyori developed a copper-Schiff base complex for the metal-carbenoid cyclopropanation of styrene.[10] Schiff bases have also been incorporated into metal–organic frameworks (MOF).[11]

Conjugated Schiff bases

[edit]

Conjugated Schiff bases absorb strongly in the UV-visible region of the electromagnetic spectrum. This absorption is the basis of the anisidine value, which is a measure of oxidative spoilage for fats and oils.

Historic references

[edit]
  • Schiff, Hugo (1864). "Mittheilungen aus dem Universitäts-laboratorium in Pisa: 2. Eine neue Reihe organischer Basen" [Communications from the university laboratory in Pisa: 2. A new series of organic bases]. Annalen der Chemie und Pharmacie (in German). 131: 118–119. doi:10.1002/jlac.18641310113.
  • Schiff, Ugo (1866). "Sopra una nova serie di basi organiche" [On a new series of organic bases]. Giornale di Scienze Naturali ed Economiche (in Italian). 2: 201–257.
  • Schiff, Hugo (1866). "Eine neue Reihe organischer Diamine" [A new series of organic diamines]. Annalen der Chemie und Pharmacie, Supplementband (in German). 3: 343–370.
  • Schiff, Hugo (1866). "Eine neue Reihe organischer Diamine. Zweite Abtheilung" [A new series of organic diamines. Second part.]. Annalen der Chemie und Pharmacie (in German). 140: 92–137. doi:10.1002/jlac.18661400106.

References

[edit]
  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Schiff base". doi:10.1351/goldbook.S05498
  2. ^ Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 1281, ISBN 978-0-471-72091-1
  3. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "anil". doi:10.1351/goldbook.A00357
  4. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "azomethines". doi:10.1351/goldbook.A00564
  5. ^ Jarrahpour, A. A.; M. Zarei (February 24, 2004). "Synthesis of 2-({[4-(4-{[(E)-1-(2-hydroxy-3-methoxyphenyl)methylidene amino}phenoxy)phenyl imino}methyl)- 6 -methoxy phenol". Molbank. M352. ISSN 1422-8599. Retrieved February 22, 2010.
  6. ^ Bajema, Elizabeth A.; Roberts, Kaleigh F.; Meade, Thomas J. (2019). "Chapter 11. Cobalt-Schiff Base Complexes:Preclinical Research and Potential Therapeutic Uses". In Sigel, Astrid; Freisinger, Eva; Sigel, Roland K. O.; Carver, Peggy L. (eds.). Essential Metals in Medicine:Therapeutic Use and Toxicity of Metal Ions in the Clinic. Metal Ions in Life Sciences. Vol. 19. Berlin: de Gruyter GmbH. pp. 267–301. doi:10.1515/9783110527872-017. ISBN 978-3-11-052691-2. PMID 30855112. S2CID 73727460.
  7. ^ Eliot, A. C.; Kirsch, J. F. (2004). "PYRIDOXALPHOSPHATEENZYMES: Mechanistic, Structural, and Evolutionary Considerations". Annual Review of Biochemistry. 73: 383–415. doi:10.1146/annurev.biochem.73.011303.074021. PMID 15189147. S2CID 36010634.
  8. ^ Malgorzata T. Kaczmarek, Michal Zabiszak, Martyna Nowak, Renata Jastrzab "Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity" Coordination Chemistry Reviews Volume 370, 1 September 2018, Pages 42-54 doi.org/10.1016/j.ccr.2018.05.012
  9. ^ Hernández-Molina, R.; Mederos, A. (2003). "Acyclic and Macrocyclic Schiff Base Ligands". Comprehensive Coordination Chemistry II. pp. 411–446. doi:10.1016/B0-08-043748-6/01070-7. ISBN 9780080437484.
  10. ^ Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. (1968). "Homogeneous catalysis in the decomposition of diazo compounds by copper chelates: Asymmetric carbenoid reactions". Tetrahedron. 24 (9): 3655–3669. doi:10.1016/S0040-4020(01)91998-2.
  11. ^ Uribe-Romo, Fernando J.; Hunt, Joseph R.; Furukawa, Hiroyasu; KlöCk, Cornelius; o'Keeffe, Michael; Yaghi, Omar M. (2009). "A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework". J. Am. Chem. Soc. 131 (13): 4570–4571. doi:10.1021/ja8096256. PMID 19281246.